Natural Sciences 102 -- Spring 2005

Homework #4, April 26, 2005 Due in class May 3, 2005

1. Degrees, seconds, et al.: (Please show you work.)

- a) Convert 10 degrees to seconds of arc
- b) Convert 0.01 radians to seconds of arc

2. Parsecs and parallax: (Please show your work.)

- a) A star has an annual stellar parallax of 0.1". What is its distance?
- b) A star is 30 pc distant. What is its annual stellar parallax?

3. Parallax: (Please show you work.)

- a) What is annual stellar parallax? What moves, and what appears to move?
- b) Draw a diagram relating the parallax angle to distances known by other means and distances determined by parallax.
- c) The annual stellar parallax of the star Vallinotto-456 is measured to be 0.02 seconds of arc. What is its distance?

4. Skinny Triangles:

Complete the following table:

,11	imprete the following tuble:				
	Angle in degrees	Angle in radians	Tangent of angle	Sine of angle	
ſ	1°				
ſ	3°				
Ī	10°				
ſ	30°				
ſ	50°				

5. Magnitudes: (Please show you work.)

A new class of dim, dull, stars has recently been discovered. They are called Bush stars. The quintessential Bush star, W-Bush, has a luminosity of 0.04 times the solar luminosity and is 1 pc distant.

- c) What is its apparent magnitude of W-Bush?
- d) What is the annual stellar parallax of W-Bush?

6. Let there be lightbulbs: (Please show your work.)

The luminosity of the star Arcturus is 10 solar luminosities = 4×10^{28} W and Arcturus is a 0^{th} – magnitude star 10 pc distant.

- a) How far away (in pc) would a 40 W light bulb be to appear as bright as Arcturus?
- b) If there are $4X10^{18}$ cm in a pc, how far away in cm would the light bulb be?